

虹科 Pico 汽车示波器

PicoDiagnostics

软件用户手册

广州虹科电子科技有限公司

更新于: 2022.5.11

第1章	软件下载/更新与语言设置	1
1.1	1 软件下载/更新	1
1.2	2 语言设置	1
第2章	电池测试	3
第3章	压缩测试(抗压测试)	4
第4章	气缸平衡	5
第5章	振动异响(NVH)	6
5.1	学习资源	6
5.2	2 引导设置	6
5.3	3 手动设置	8
	5.3.1 "设置"标签	8
	5.3.1.1 RPM 信号	8
	5.3.1.2 振动信号1	0
	5.3.1.3 记录时间长度1	7
	5.3.2 "车辆信息"标签1	8
	5.3.3 "录制和分析"标签2	3
5.4	4 数据分析工具2	4
	5.4.1 数据界面	4
	5.4.2 术语	.5
	5.4.3 数据回放控件	.6
	5.4.4 数据视图2	.6
	5.4.5 视图通道与显示	9
	5.4.6 添加振动	1
	5.4.7 纵轴刻度的调节	2
	5.4.8 水平轴刻度的调节	3
	电话: 020-38743030 , 38743032 传真: 020-38743233 www.gichebo.com	

cgf@hkaco.com 广州市黄埔区科学城神舟路 18 号润慧科技园 C 栋 6 层

HongKe

广州虹科电子科技有限公司

	5.4.9 波形放大功能	34
	5.4.10 标尺测量	35
	5.4.11 谐波标记(阶次标尺)	35
	5.4.12 感兴趣的最大频率	36
	5.4.13 参考波形	37
	5.4.14 导出数据	38
	5.4.15 过滤	39
	5.4.16 加载音频文件	41
	5.4.17 函数(声音)发生器	44
第6章	更多资源协助	46

第1章 软件下载/更新与语言设置

1.1 软件下载/更新

软件是终生免费的,如需更新软件,请到虹科 Pico 汽车示波器官网下载,<u>www.qichebo.com</u>

1.2 语言设置

如果你的软件是英文显示的,你想更改为中文显示,请按下面的指引修改。

电话: 020-38743030, 38743032 传真: 020-38743233 www.qichebo.com

1

-	JAM	der-	玉山	# .	æ	₩L	**	Ŧ	RH	~~	-
,	211	-	1 T '	-	J 7	ТΤ	ᆳᆇ	-71	rÞ	~	ų

HongKe

references		×
User Details Region	al and Language General	
Standards and Forma	ts	日清求軍改语言
Measurement system	System default (M \sim	
Temperature	° C ~	
Pressure	psi v	! 立即重新启动
Road Speed	km/h \sim	7、点"是" 9002950
-Language Selection:		是(Y) 否(N)
Language: 中文(简体	*) 旧版 ~	
	6、点OK 📃	OK Apply Cancel

第2章 电池测试

该测试操作方法请观看指导视频

https://www.bilibili.com/video/BV1f54y1S76i

或扫二维码手机观看

第3章 压缩测试(抗压测试)

该测试操作方法请观看指导视频

https://www.bilibili.com/video/BV13C4y187sU

或扫二维码手机观看

第4章 气缸平衡

该测试对现今的大多数汽车不适用。可采用其它工具来判断汽缸工作是否平衡,是否存在失火。

比如使用 WPS500X 压力传感器 配合 PicoScope 7 软件检测排气管脉冲压力波形,即可判断是否工作平衡和定位哪一个汽缸存在失火。

设置向导			×
整告			
本气缸平衡测试不能在所有车辆上工作。如果您想 机测试功能,则我们建议使用该功能。 对于具有以下特点的车辆,此测试可能不可靠: - 禁用发电机的现代"智能充电"系统 - 带有缺陷的发电机或嗓音较大的电气系统 - 6 紅或更多气缸低压缩比发动机 - 为了减少急速排放/急速控制或燃油经济性原则	具有可以通过扫描工 因,停止一个或多个	具启用的发动	FMATA.
Help	< Back	Next >	Cancel

第5章 振动异响(NVH)

5.1 学习资源

想系统学习振动异响(NVH)诊断知识,请阅读以下视频和案例。

教学视频:

https://space.bilibili.com/605353524/channel/seriesdetail?sid=711295

案例文章:

https://bbs.qichebo.com/

5.2 引导设置

作为新手,我们建议你遵循软件的引导,一步步设备好软件和安装连接好设备。 如你需要更高级的设置和测试,请阅读下面 **5.3 手动设置**。

PicoScope NVH 分析仪设置向导			– 🗆 X
请从以下选择一个选项:			
开始新的测试			
加载已保存的测试	:		机虹界
逃过向导流程。使用我输入的	的最新设置		
	< Back	Next >	Cancel

设备连接和使用,这两个视频可供您参考: 视频一: <u>https://www.bilibili.com/video/BV1G64y1z7o5</u> 视频二: <u>https://www.bilibili.com/video/BV1s44y117Fr</u>

或者扫下面二维码用手机观看这两个视频:

软件的各个功能的详细按钮,也可参考这个视频:

视频三: <u>https://www.bilibili.com/video/BV1tT411T7BY</u>

5.3 手动设置

5.3.1 "设置"标签

ricoDiagnos	stics - NVH	
文件 查看(\	V) 测试(T) 选项 帮助 设置 车辆信息 录制和分析	
NVH	 ■ 中部高速 外間内内内 ■ RPM 信号 ■ 发动机 RPM 选择 诊断 ● J2534/J1939/ELM327 扫描工具 	
	 ○ EV 未检测到设备 无法获取 VIN 通道 D ○ 方波/转速表 静态 RPM 信号质量 0 RPM 	MEEF
传动轴平衡	旗式 3 轴 3 轴 方框 TA259/TA366(XYZ) 接口 ChA(X) 前/后 // 传感器 TA143 加速度计 ChB(Y) 垂直 // ChC(Z) 水平 // 位置 乘客车厢	✓ 备注: 单击此处添加备注

5.3.1.1 RPM 信号

这里提供三种方式供软件获取 RPM 信号(发动机转速和车速):

(1) 使用 J2534/J1939/ELM327 扫描工具连接车辆 OBD 诊断口获取 RPM 信号。

比如使用<u>虹科的 J2534 诊断线(TA512),</u>如下图

(2) 方波/转速

使用通道 D,连接示波器的黄色测试线(TA125 或 TA407)到曲轴传感器上,输入曲轴传感器信号盘的齿数,如 60 个,软件就会获取曲轴信号并计算曲轴转速。

(3) 静态 RPM

如所检测的车辆没有 OBD 诊断接口和曲轴传感器的话,你可以在固定的转速下做这个测试。比如输入 1000RPM,你控制油门让发动机稳定在 1000RPM,然后测试。

我们建议优先使用第一种:使用 J2534/J1939/ELM327 扫描工具来获取 RPM 信号,这是最简单也最方便的方法。

5.3.1.2 振动信号

软件提供多种模式供你测试。请根据需要选择适合你的模式(由你选择的 NVH 套件和你所需的信号 组合决定。)

振动信号	
模式 3 轴加单一通道 ~ 单一通道	
13轴 方 <mark>1</mark> 3轴加单一通道	ChA(X)前/后 ☑ ChB(Y)垂直 ☑ ChC(Z)水平 ☑
	位置 乘客车厢 · 备注: 单击此处添加备注
方框 TA148/TA366(Sum) 接口 〜6感器 TA143 加速度计 〜	将接口的输出端连接到通道 D 的输入端 方向:未指定 编辑
	位置 乘客车厢 ∨ 备注 : 单击此处添加备注…

方框:指的是 NVH 接口盒,如 TA259 如下图。请根据你的接口盒型号(产品背面有写)选择。

传感器:指加速度计(TA143)和麦克风(TA144)

位置: 传感器所放的位置, 如乘客车厢和发动机舱

备注:供你填写必要信息,比如填写"加速度计放置在副驾驶员座位导轨左侧的前方螺栓处",以便 记忆你传感器的安装位置。

方向:加速度计(TA143)是个3轴的加速度计,有X、Y、Z三个方向,安装时请注意方向。

电话: 020-38743030 , 38743032 传真: 020-38743233 www.qichebo.com

10

一般我们建议 X 轴朝车辆的前后方向、Y 轴朝车辆的上下方向、Z 轴朝车辆的左右方向。之所以这样 建议,并没有特殊的意义,只是为了养成这个习惯,保持安装的统一,不会混乱,也方便以后数据分析时 能轻易记起 XYZ 分别对应哪个方向。

(1) 单一通道模式

振动信号 模式 単一	通道 ~		
方框 传感器	TA259/TA366(XYZ) 接口 TA143 加速度计	~	从接口中将所需的铀输出端用作通道 B 的输入端 方向:未指定 <u>编辑</u>
			位置 乘客车厢 → 备注 : 单击此处添加备注…

选用此模式,只将一个 NVH 信号输入到示波器。请注意此模式只能将信号输入到示波器的 B 通道, 不能输入到其它通道上。

硬件连接

只一个麦克风连接到示波器上,如下图:

只一个加速度计连接到示波器上,如下图(如果你使用的是 4 通道的示波器和 3 轴的 NVH,建议你使用 "3 轴"模式,这样你可以同时观看 1 个位置 3 个方向的信号):

(2) 3 轴模式

振动信号 模式 3 轴	v		
方框 传感器	TA259/TA366(XYZ) 接口 、 TA143 加速度计 、	ChA(X)前/后 ☑ ChB(Y)垂直 ☑ ChC(Z)水平 ☑	
		位置 乘客车厢 ~ 备注 : 単击此处添加备注。	

选用此模式,你可使用 TA143 加速度计安装在一个位置上,同时观看 XYZ 三个方案的振动信号,连接如下图:

TA143 加速度计的 X 轴朝车辆前后方向放置并连接到示波器通道 A, Y 轴朝车辆上下(垂直)方向放置并连接到示波器通道 B, Z 轴朝车辆左右(水平)方向放置并连接到示波器通道 C。

(3) 3 轴加单一通道模式

振动信号 模式 3 轴;	如单一通道 ~		
方框 传感器	TA259/TA366(XYZ) 接口 TA143 加速度计	~	ChA(X)前/后 ChB(Y)垂直 ChC(Z)水平
			位置 乘客车厢 ✓ 备注: 单击此处添加备注
方框 传感器	TA259/TA366(XYZ) 接口 TA144 麦克风	~	从接口中将所需的轴输出端用作通道 D 的输入端
			位置 乘客车厢 ∨ 备注 : 单击此处添加备注…

选用此模式,你可使用两个传感器,同时记录两个信号。你可以同时使用两个加速度计,或同时使用 一个加速度计和一个麦克风。连接如下图:

使用一个加速度计和一个麦克风

使用两个加速度计

HongKe

广州虹科电子科技有限公司

(4) 多传感器模式

动信号							
莫式 多个	传感器 ~	界面数里	1 🜩				
方框 传感器	TA259/TA366(XYZ) 接口 TA143 加速度计		✓ 从接 口 方向∷] 中将所需 未指定 <u>编</u>	的轴输出端用 (<mark>辑</mark>	作通道 A	的输入端
			位置	乘客车厢	~	′ 备注:	单击此处添加备注…
方框	TA259/TA366(XYZ) 接口		从接□	口中将所需	的轴输出端用	作通道 B	的输入端
传感器	TA144 麦克风		~				
			位置	发动机舱	~	备注:	单击此处添加备注。
方框	TA259/TA366(XYZ) 接口		★接口 方向::] 中将所需 未指定 <mark>编</mark>	的抽输出端 用(<u>辑</u>	作通道 C	的输入端
传感器	TA143 加速度计		✓ 位置	乘客车厢	~	~ 备注:	单击此处添加备注…
•							
方框	TA259/TA366(XYZ) 接口		╱从接口	口中将所需	的轴输出端用作	作通道□	的输入端
行感器	1A144 麦克风		✓	发动机舱	~	备注:	单击此处添加备注。
				00000000		HAT.	

选用此模式,你可最多使用4个传感器,同时记录4个位置的4个信号。这4个信号可以是声音和振动的任意组合。

比如我想同时检测发动机舱的声音、振动和乘客舱的声音、振动这4个信号。连接如下图:

5.3.1.3 记录时间长度

你可以启用高级功能,可以手动修改一个记录文件的记录长度。软件默认一个文件记录 50 秒,最大 记录 500 秒。

一个文件记录 50 秒,不是指你只可监测 50 秒,而是你保存到电脑的一个文件包含 50 秒的数据。比如你连接好设备,启动软件,开车上路,软件一直在监测数据,30 分钟后,达到了故障重现的条件(如达到特定的车速),车辆开始抖动,此时软件已经监测到了抖动时的数据,你即可停止采集数据,将数据文件保存到电脑里。那么这个文件所保存下来的数据是包含了停止采集之前这 50 秒的数据。

高级选项	页					_		×
图形	FFT	过滤	功能					
	启用高绑 启用向导 计算行驯 启用 OB	장功能 달 史速度 D 记录	2、	_ 勾选	"启用	高级	及功育	עע ענ
						重置	确定	(0)

ricoDiagnos	stics - NVH
文件 查看()	<i>/</i>) 测试(T) 选项 帮助
	设置 <mark>车辆信息</mark> 录制和分析
	👍 RPM 信号
	发动机 RPM 选择
100	诊断
MAN	○ EV
	未检测到设备
	无法获取 VIN 通道 D 〇 古油 体描ま
	信号质量 💦 0 RPM
使出社实体	振动信号
传动细平衡	
	1年17 24日 (1)
	方框 TA259/TA366(XYZ)接口 ∨ ChA(X)前/后 ☑
	传感器 TA143 加速度计 ✓ ChB(Y) 垂直 ☑
	ChC(Z) 水平
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
电池测试	信号选项
	┃ 100

5.3.2 "车辆信息"标签

HongKe

请按实填写车辆对应信息。

(1) 基本信息

FWD: 前驱, RWD: 后驱, AWD: 全驱, 4WD: 四驱

轮胎校正系数:请保持软件默认值,除非你知道更适合的系数。相关解释,请见技术论坛帖子: https://bbs.gichebo.com/forum.php?mod=viewthread&tid=66602

或用手机扫码阅读

HongKe ■■■■■■■[●]虹科 广州虹科电子科技有限公司

(2) "高级"按钮

「车辆详细信息」 「FWD RWD AWD 4WD)	高级	配置 PID			
Γ	高级车辆设置		•			×
发动机配置 直进	变速器			皮带轮测量/变速比		
气紅 4	类型	手动	\sim	曲轴皮带轮	0.00 🚖	
	档位	5	÷	水泵皮带轮	0.00	
State P	档位	传动比		发电机皮带轮	0.00	
	1	0.000	+	动力转向皮带轮	0.00 🖨	
	2	0.000	▲	AC/压缩机皮带轮	0.00	
	3	0.000	▲ ▼	自定义:	Shiran	
	4	0.000	÷		0.00	
	5	0.000	÷		0.00	
					0.00	
				测量/传动比类型 直径	~	·
	主减速器轴	1.00	€ 第1-第・			
		1.00	♥ 第 5 - 第 🤅	所有皮带轮变速比必须使用相同	酌单位来指定。	
	转移率	0.00	÷			
	后轮差速器传动比	1.00	•	全部清除	应用更改取消	肖

这是一个可选项,但如果你输入更多传动比到"高级"对话框里,软件会自动帮你计算更多信息,以 便你能更好地分析振动异响,如软件会计算记录你行驶中的变速器档位信息、水泵/发电机等的旋转频率。

变速器参数栏,在类型中选择变速器类型,在齿轮中输入档位数,然后在传动比中输入各档位对应的 传动比。

主减速器轴	1.00	-	第	1	_	第	
	1.00		第	5	Ę	第	1
转移率	0.00	7					
后轮差速器传动比	1.00	-					

主减速器轴:指的是前轮差速器的传动比,即前差速比。前驱车或四驱车才需要输入这个参数,否则为默认值 1.00。

在一些前驱车和四驱车上可能会有两个前差速器,1档到4档共用一个,5档和6档共用一个,所以可能需要输入两个主减速器轴的值。(例如丰田 Avensis 6速手动 2.2D,大众高尔夫 Mk5 2.0 GT TDI)

转移率:一般只有四驱车和全驱车才会用到。为了应对一些极端的路面状况(泥泞、砂砾、雪地等), 会在变速器输出轴和传动轴之间加入另外的档位(通常加入两档,高和低),也就是安装一个分动器使车 辆输出最大的扭矩。"转移率" 输入的就是分动器的传动比(有低速档和高速档两个传动比)。

后轮差速器传动比:一般是后驱车/全驱车需要输入这个传动比。如果是前驱车且没有后轮差速器,则

电话: 020-38743030, 38743032 传真: 020-38743233 www.qichebo.com

cgf@hkaco.com 广州市黄埔区科学城神舟路 18 号润慧科技园 C 栋 6 层

默认值为1.00。

皮带轮测量/变速比		
曲轴皮带轮	0.00	÷
水泵皮带轮	0.00	÷
发电机皮带轮	0.00	÷
动力转向皮带轮	0.00	-
AC/压缩机皮带轮	0.00	÷
自定义:		
3	0.00	-
	0.00	-
	0.00	-
测量/传动比类型 直径		\sim
直径速度		
所有皮带轮变速比必须使用相同	的单位来指定。	

最后是**皮带轮测量/变速比**这一部分,如图 3 所示,输入的是所有与曲轴皮带轮有传动关系的皮带轮直径(Diameter)或者速比(Speed)。

举个例子,**如果类型选择直径**,曲轴皮带轮直径测得是150mm,AC(空调)/压缩机皮带轮测得是 75mm。如下图所示,在相应的方框里输入这些尺寸。(一般这些皮带轮的直径尺寸可能技术手册中查不 到,需要技术人员自己手动去测量。)

皮带轮测量/变速比	
曲轴皮带轮	150.00 🚖
水泵皮带轮	0.00
发电机皮带轮	0.00
动力转向皮带轮	0.00
AC/压缩机皮带轮	75.00
自定义:	
	0.00 🖨
	0.00
	0.00
测量/传动比类型 直径	~

如果类型选择速比,就需要输入各皮带轮与曲轴皮带轮间的传动比。曲轴皮带轮的频率是 E1,假设 AC 空调/压缩机皮带轮的频率是曲轴皮带轮的 1.75 倍,也就是 E1.75。那么在下图曲轴皮带轮这里填入"1",

电话: 020-38743030, 38743032 传真: 020-38743233 www.qichebo.com

21

在 AC 空调/压缩机皮带轮这里填入"1.75"。以此类推,其他皮带轮的频率是曲轴皮带轮的多少倍,就填入 多少。

皮带轮测量/变速比		
曲轴皮带轮	1.00 🖨	
水泵皮带轮	0.00	
发电机皮带轮	0.00	
动力转向皮带轮	0.00	
AC/压缩机皮带轮	1,75	
自定义:		
	0.00	
	0.00	
	0.00	
测量/传动比类型 速度		~

"自定义"一栏,你可以输入你想计算的特定部件的名称和它跟曲轴皮带轮的传动比,软件就会自动 计算你自定义部件的转动频率。

(3) "配置 PID" 按钮

配置	BOBD-II PID					;
비폐	制的 PID 库					创建
P.	ID	描述	公式	单位	^	
	04	计算所得的发…	A*100/255	%		UUURATS
	05	发动机冷却剂	A-40	°C		编辑
	0B	进气歧管绝对	A	kPa		
	0F	进气温度	A-40	°C		导入
	10	MAF 气流速度	((A*256)+B) / 100	grams/sec	and the second	导出
	20	Commanded EGP	A*100/255	•/) v 80	
当 「P	前捕获的 PID	开	始捕获 💿 💿 停.	止捕获 	_	
	0C	RPM	((A*256)+B)/4	错误	0	
	0D	Vehicle speed	A	错误	0	
4						应用更改 取消

这是个高级选项,可需要使用它,请阅读技术论坛的这个帖子详细了解: https://bbs.qichebo.com/forum.php?mod=viewthread&tid=67083

或者手机扫下面二维码阅读

5.3.3 "录制和分析"标签

(1) 开始录制/停止录制

●开始录制 ●停止录制 点击左下角的开始录制/停止录制

(2) 信号标记

HongKe

- 虹彩

信号标记的作用是,在采集信号过程中,如故障出现了,你点击"信号标记"旁边的绿色+号 Ⅰ ,添 加一个标记在信号历史上(如上图),以此来标记故障出现的时刻。以便你保存数据后,回到车间回放数 据作分析时,提醒你自己关注哪个时刻的数据。

(3) 数据保存

PicoDiagnostics - N	VH
文件 查看(V) 测试	(T) 选项 帮助
加载(L)	辆信息 录制和分析
保存(S)	
导出(X)	`}
打印(R)	
打印预览(V)	
首选项	
退出(E)	
26.7 m	1

5.4 数据分析工具

5.4.1 数据界面

界面有两部分组成。

下方是信号历史,这里记录了振动的原始信号、发生的时间、车速和发动机转速等信息。

上方是对所选时间段的数据进行计算分析的数据显示。

如下图,我们在信号历史窗口选择了约第 483 秒至 485.75 秒这段的数据,上方显示的仅是这一小段数据的计算分析结果。

5.4.2 术语

- E1、E2、E3……, E 表示 Engine (发动机), 数字 1、2、3……表示振动阶次
- E1,指发动机转速相关的一阶振动,即该振动的频率是曲轴转动频率的1倍。
- E2,指发动机转速相关的二阶振动,即该振动的频率是曲轴转动频率的2倍。
- E3,
- P1、P2、P3, P表示 Propshaft(传动轴),数字1、2、3……表示振动阶次
- P1,指传动轴转速相关的一阶振动,即该振动的频率是传动轴转动频率的1倍。
- P2、P3……
- T,表示Tire(轮胎),T1、T2、T3······
- WP, 表示 Water Pump (水泵)
- A, 表示 Alternator (发电机)
- PS, 表示 Power Steering (动力助向)
- AP, 表示 AC/Compressor (空调/压缩机)

5.4.3 数据回放控件

选择感兴趣的数据,在信号历史窗口上单击鼠标左键拖动选择。

||播放 |◀ ◀ ◀| || ▶ |▶ ▶| | i

单击底部这些按钮也可以实现前进和后退等回放功能。

5.4.4 数据视图

(1) 频率视图

此视图的水平轴是频率,纵轴是幅值,它显示每个频率值振动所对应的幅值。

(2) 3D 频率

此视图以 3D 的形式显示,多了一条时间轴

HongKe

(3) 行驶速度视图

此视图,水平轴以X表示轮胎的转动频率,目的是让用户快速判断感兴趣的振动与轮胎转动频率的阶次关系。如下图方框里,对于我们感兴趣的小尖峰,我们用标尺测量它的尖峰对应的水平轴是 0.46X,即 它的频率是轮胎的 0.46 阶次。

(4) RPM 阶次视图

此视图,水平轴以 X 表示发动机曲轴的转动频率,目的是让用户快速判断感兴趣的振动与发动机转速的阶次关系。如下图方框里,对于我们感兴趣的尖峰,我们用标尺测量它的尖峰对应的水平轴是 0.29X,即它的频率是发动机曲轴的 0.29 阶次。

HongKe

(5) RPM 阶次视图

此视图,将振动与柱形图显示出来,特别适合提供给车主看,数据易懂,哪个数据大哪个数据小,一 目了然。它可帮你向车主解释故障点。

(6) 图视图

此视图,以图形分颜色显示不同的部件和其对应的振动数值,特别适合呈现给车主看,哪个部件有问题,一目了然。它可帮你向车主解释故障点。

HongKe

(7) 时域视图

此视图,可以让你基于时间来观看振动信号的变化,特别适用于查找间歇/偶发的振动异响。用多个传 感器来监测不同位置的信号,观看哪个位置的信号最大,以确认探头所处的位置最接近故障源头。

5.4.5 视图通道与显示

如果你使用了3轴信号模式,你可以点击下图的"切换到通道视图"来切换观看3个轴(方向)各自 对应的振动数据。

HongKe

- 虹科

你也可以在界面上点击鼠标右键,选择"显示模式",在下拉列表里选择你感兴趣的显示模式。

你也可以在"视图中的通道"列表里,勾选或不勾选你要显示或不显示的通道。如下图,我选择了不显示 B 通道的数据。

5.4.6 添加振动

点击"添加振动"按钮,你可以在列表里勾选你要额外显示的振动。

你也可以点击"添加"来自定义你感兴趣的振动。如下图:

💐 添加 Custom Vibrati	on	×
Source 固定频率 ~ Display Name 自定义振动	Correction Factor 1.000	Frequency (Hz)
		OK Cancel

Source: 源头,即基准 Correction Factor: 修正系数,即倍数 Display Name: 显示名称 Short Name: 名称缩写

您要显示的是 E5, 即 E1 的 5 倍阶次。所以 Source 选择 E1, Correction Factor 输入 5。Display Name 我 要显示为 E5, 输入 E5; 缩写名称也输入为 E5。如下图:

💐 添加 Custom Vibrati	on	×
Source E1 ~ Display Name E5	Correction Factor 5.000	Frequency (Hz) 100.00

HongKe

虹科

5.4.7 纵轴刻度的调节

有时你会遇到数据在窗口上显示不完全的情况,如下图,最高的振动值已超过了纵轴最高的刻度 2.56mg。此时你可以改变刻度的大小,让数据更好地显示在窗口里。

方法一:鼠标光标移动纵轴刻度上,按住鼠标左键,就可上下拖动刻度。如下图,将刻度往下拖大一些,就能显示完数据。

方法二:在窗口点击鼠标右键,选择"自动比例"或"重置刻度比例",软件会自动适配最佳的显示。 如下图:

HongKe

中丁利

5.4.8 水平轴刻度的调节

软件默认显示 0 到 200Hz 的数据,如需要观看更高的频率,可以按下图的指引,设置显示更高的频率, 比如在"感兴趣的最大频率"里输入 20000,即可观看 0 至 20000Hz 的数据。

但由于硬件的限制,如果你只使用了加速度计,你只能观看到 350Hz 的数据,因为加速度计的测量范围为 0 至 350Hz。如果你使用了麦克风,则可以观看到 20000Hz。

你可以将鼠标光标移动水平轴刻度上,按住鼠标左键,就可左右拖动刻度,来显示你感兴趣的频率。 如下图。

HongKe

5.4.9 波形放大功能

在"录制与分析"窗口捕获到振动异响数据后,可以使用放大功能找出可疑的频率和峰值。在"频率图" 的右上角,有一个"放大镜"图标。点击该图标,在屏幕上按住鼠标左键,然后在你感兴趣的波形区域拖拽 出一个方框并松手,就能将框里的波形放大。放大镜图标旁边是"撤销返回上一步"图标,要想退出放大模 式,只需要再次点击放大镜图标即可。

HongKe

中丁利

5.4.10 标尺测量

NVH 软件有两个水平轴标尺和两个纵轴标尺。

水平轴标尺用于测量频率以及该频率下的振动/声音大小,纵轴标尺用于测量某一个感兴趣的点的振动/声音大小。标尺位于波形视图左下角,如下图所示(图中我只拖出了一个水平轴标尺和一个纵轴标尺)。

5.4.11 谐波标记(阶次标尺)

阶次标尺,可以让你快速知道你感兴趣的频率跟某一特定频率的阶次关系。比如下图,我对第2高的 尖峰感兴趣,我使用阶次标尺,将第一条标尺放在 E1 的位置,我们就能快速知道第2高的尖峰的频率是 E1的4倍,即是 E4。

HongKe

虹彩

阶次标尺软件默认显示到5阶,如果你要让它显示到更高的阶次,请按下图的指引设置。最高可以显

5.4.12 感兴趣的最大频率

软件默认显示的最大频率是 200Hz,如果你想让软件显示大于 200Hz 的频率,请到菜单"选项"-"高级选项"-"图形"-"感兴趣的最大频率"下修改,如你想让软件显示 0-20000Hz,即输入 20000,然后点"确定"。操作指引,参照下图。

备注:

只连接加速度计时,软件最大只能显示 350Hz;

连接麦克风,或麦克风和加速度计同时连接时,软件最大显示到 20000Hz。

HongKe

- 虹科

5.4.13 参考波形

分析振动异响数据时,如果我们有正常车和故障车的数据做对比,会大大简化我们的诊断时间。除此 之外,维修前后做一个振动异响数据的比较给到客户,那也是一个非常有力的数据证明。NVH 软件的参 考波形功能,就可以快速把两个数据放在同一屏幕上进行比较。

将鼠标放置在波形区域任意位置,单击鼠标右键,在弹出的窗口中选择"参考波形",选择您想要复制 的通道。并且修改名称,点击确定后软件会自动将参考波形颜色换成其他颜色,以便区分。

操作方法如下:

HongKe

38

5.4.14 导出数据

将鼠标放置在信号历史窗口里任意位置,点击鼠标右键会跳出"Export Options/导出选项"。

"导出选定区域到 CSV" 指的是将该段时间内的发动机转速、车速和所有通道加速度计信号导出到 Excel 表格中,可用于后续数据处理;

"导出选定区域到 Wav" 是指将麦克风/加速度计捕获到的声音信号导出,你可以用适当的音频播放软件来听 WAV 文件;

"导出选定区域到 PDDATA"是指将所选择的感兴趣区域导出为一个 PDDATA 文件,这可以减小文件的

PicoDiagnostics软件除了保存文件为自用的.PDDATA格式之外,还可以将文件另存为(导出).atfx 文件格式,也就是说可以用LMS振动设备打开Pico NVH采集到的振动异响数据。

操作如下:

39

5.4.15 过滤

我们提供了多种过滤功能方便你分析数据。操作如下图:

点击"选项"——"高级选项"

然后在跳出来的对话框里点"过滤",这里就有几种过滤类型供你选择。

"无",即不做任何处理。

"低通",如果你输入100Hz,即低于100Hz的声音在软件显示,高于100Hz的被去掉了。

"高通",如果你输入100Hz,即高于100Hz的声音在软件显示,低于100Hz的被去掉了。

"带通",如果你输入100Hz 至 200Hz,即软件显示的是 100Hz 至 200Hz 的声音,其它声音被去掉了。 "带阻",如果你输入100Hz 至 200Hz,即软件将 100Hz 至 200Hz 的声音去掉了,其它声音仍保留。

上图我选择了"带阻",并将 700Hz 到 800Hz 的声音去掉。这样,回放时就听不到这个区间的声音了。 我们技术论坛上有一个案例,详细讲解这个功能的应用,请移步到论坛上阅读:

https://bbs.qichebo.com/forum.php?mod=viewthread&tid=71448

电话: 020-38743030 , 38743032 传真: 020-38743233 www.qichebo.com

40

你也可以手机扫二维码阅读

5.4.16 加载音频文件

我们经常会遇到一种情况是:车主上下班路上经常会听到一个异响,但车交到我们手上,我们怎么在 外面去试车,都听不到这个异响,或者条件达不到重现不了这个异响。

如果是这样,我们是不是有点崩溃?但,请不要着急。我们有解决方案:NVH 软件支持导入音频文件。

我们每个人都有手机,手机可以录音。如果车主遇到了异响,他把这个声音录下来,然后再发给我们, 我们将它导入 NVH 软件里面,再应用软件的强大分析功能,这个问题是不是就简单很多了?

使用方法:

点击"选项"——"高级选项"

♥icoDiagno 文件 查看 I IVH 1	stics - NVH 2 測试 选项 帮助 设置 保存设置 高級选项 3 校准 高級选项 3 技社 函数发生器 1描工具 未检测到设备 7 1描工具 无法获取 VIN 通道 A 方波/转速表 静态 静态 RPM 0 RPM
	指亏质里 ♥ ♥ ₩ 振动信号 模式 单一通道 >
E"功能"标签T	,勾选"启用高级功能"

net PicoDiagnostics - NVH			
文件 查看	测试 选项 帮助		
	2 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		
	RPM 信号 高级选项 — □ ×		
nvh	发动机 RPM 选择图形 FFT 过滤 功能		
传动轴平衡	 诊断 ● J2534 未检测码 无法获取 通道 A ○ 方波/ 方波/ 静态 静态 自用 0BD 记录 		
	振动信号 模式 单通道 		
电池测试			

然后在"选项"里就会有"加载音频文件"的选择。(**这需要连接上示波器才能操作**)

然后在跳出的对话框里,你就可以加载音频文件了,并创建信号了。(目前软件只支持.wav 格式,如 果是 mp3 或其它格式,网络上有很多转格式的软件,大家可以用第三方软件将格式转为.wav 格式再导入)。 如下图:

HongKe

🖉 PicoDiagnostics - NVH — 🗌			
文件 查看 NVH	 測试 选项 帮助 设置 车辆信息 录制和分析 RPM 信号 发动机 RPM 选择 诊断 ● J2534/J1939/ELM327 扫描工具 未检测到设备 无法获取 VIN 通道D ○ 定時 共使連集 	加載音频文件 声音無性 通道 2 采祥速率 44100 长度 21s 文件名 20190612_145801.wav 加載 播放 仓健信号	
传动轴平衡	静态 ○ 静态 RPM 信号质量 2 0 RP	▲ 加酸波形文件 X ← → × ↑ ▲ « NVH培训 > 声音过滤 × ひ の 搜索"声音过滤"	
电池测试	振动信号 模式 多个传感器 ~ 方框 TA259/TA366(XYZ)接口 传感器 TA143 加速度计	组织 ▼ 新建文件夹 ■ 桌面 * ^ 名称	
抗压测试	方框 TA259/TA366(XYZ)接口 传感器 TA143 加速度计	2019新装箱单(声音过滤	
气缸平衡	信号选项 最大信号历史大小		

效果如下图:

5.4.17 函数 (声音)发生器

如上图,打开函数发生器的对话窗口,输入一个频率值,激活声音。你会听到你的电脑扬声器发生该 频率的声音。(当然如果你输入的频率高于你的听觉范围,你可以听不到。)你连接上 NVH 设备,接上 麦克风,你就会看到这个 10000Hz 的声音,如下图:

cgf@hkaco.com 广州市黄埔区科学城神舟路 18 号润慧科技园 C 栋 6 层

应用一: 检测门窗密封性

我将电脑的蓝牙与车上的多媒体连接,声音通过车的音响播放。关紧门窗,然后我在车外用 NVH 的麦 克风沿着门窗的密封条捕捉声音。后面的,你应该想到了,如果某处密封不好,此处捕捉到的 10000Hz 的声音幅值会偏大。

应用二: 查找共振响应部件

这里有个视频供参考,<u>https://www.bilibili.com/video/BV1Gy4y1T7AL</u> 或手机扫二维码观看

第6章 更多资源协助

技术案例与视频教学,你都可以在我们虹科的官网上找到 www.qichebo.com 接收我们即时的技术分享,请关注我们微信公众号

