初级点火波形
通道 A - 初级绕组驱动信号(数字开关信号)
该低强度信号在0伏和大约5伏之间切换。当信号走高,它导致线圈通电。当电压返回到0,线圈初级绕组的电流断开,包围绕组的磁通量突然减少,这在次级电路里感应出一个电压和线圈高压点火。开启(0上升到5伏)和关闭(5伏到0)时间点由汽车的电子控制模块(ECM)决定。这两个事件的间隔被称为闭合阶段 或通磁时间。电子点火发动机的闭合阶段由放大器或ECM里的限电流电路控制。
通道 C - 初级驱动电流
上面的4通道示例波形,显示限电流电路在工作。初级电路的电流在闭合阶段开始处开启,并一直上升到大约10安培。在这一刻,该电流被保持恒定一段短暂时间,然后在点火时刻被释放。从电流开启的初始时刻到电流被释放时刻的时间长度取决于发动机的转速。发动机转速越低,电流的坡度越短;坡度的长度随着发动机转速增加而增加。
次级点火波形
示例波形显示的点火波形是电子点火发动机的典型波形。该波形采集于Vectra Z22SE发动机的COP单元。
次级波形显示击穿火花塞间隙所需的初始尖峰电压之后,高压流过火花塞电极的时间长度。这时间被称为“燃烧时间”或者“火花持续时间”。在示例波形里,示波器屏幕中央显示的水平电压线是相当恒定的电压,但是它后面突然下降到被称为“线圈振荡”阶段。“燃烧时间”也显示在图 5 里。
线圈振荡阶段(如图 6 所示)应当显示最少4个尖峰(包括波峰和波谷)。损失尖峰意味着要更换线圈。线圈振荡与下一个“下降”之间的时间,线圈处于空闲状态,此时线圈次级电路没有电压。这个“下降”被称为“负极性峰值”(如图 7 所示) ,并产生一个与火花塞击穿电压相反方向的小振荡。这是由于线圈的初级电流刚开启。线圈里的电压只有在正确的点火时刻才被释放,然后高压火花点燃空气/燃油混合物。
火花塞击穿电压是击穿火花塞电极间隙所需的电压,通常被称为“火花塞kV”。这显示在图 8 里。这个例子的火花塞kV是13.5kV。