Search Results for: TA012

Bosch CDi流量控制阀

这个测试的目的是评估Bosch CDi流量控制阀的工作状况,分析流量控制阀在怠速时的控制信号电压和占空比。

观看流量控制阀(Bosch共轨柴油)测试视频

如何进行测试

●根据汽车制造商提供的资料查找出流量控制阀的接地回路电线。该阀有两条电路连接:一条点火正极(15V)和一条切换/通断的接地回路。
●连接一条BNC测试线到示波器A通道,连接一个后背刺针到测试线彩色接头(正极)上。再用刺针背刺流量控制阀的通断接地线,测试线黑色接头连接到蓄电池负极搭铁。
●也可以断开2针脚连接器,使用TA012 2针脚引线6-路通用引线连接2针脚连接器分开的两半,再将测试线连接到引线上。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击”开始”,开始观察实时数据。
●打开点火开关,等待仪表板预热塞指示灯熄灭后,再起动发动机。
●采集到波形后,“停止“示波器运行。
●关闭发动机。
●使用波形缓冲区放大以及测量等工具来观察和分析波形。

示例波形

波形注意点

这个波形有以下特征:

●是一个PWM脉冲宽度调制的接地开关信号,电压在电源正极约15V和电源负极约0V切换变化。
●信号电压处于0V的时间和PWM占空比有关。在示例波形中,每个循环周期内电压处于0V占了大约五分之二,也就是说占空比为40%。
●示例波形中约每5ms 出现一个循环周期,因此循环频率为200 Hz。

波形库

波形库添加通道的下拉菜单中选择MPROP Valve voltage

更多信息

共轨柴油喷射(CDi)的流量控制阀是一个执行器。它通常由点火正极(15V)供电,且由CDi控制单元提供的占空比接地来控制阀门。

流量控制阀(也被称为进油计量阀或流量调节器)是被设计来控制从低压或提升泵流往高压泵活塞的柴油数量。

越多的柴油进入高压泵活塞室导致产生越高的压力,最终共轨管中的压力也越高。越少的柴油进入高压泵活塞室导致产生越低的压力,最终共轨管中的压力也越低。

控制供应给高压泵活塞室的燃油数量可降低燃油温度(通常不需要燃油冷却器),并降低高压泵的负载。

如果怀疑信号有故障时,测试CDi控制单元与流量控制阀之间的导线。

确保CDi控制单元有良好的电源供应和接地,这是必需的。

诊断故障代码

相关故障代码
P0001 P0002 P0003 P0004

P0087
P0088
P0251
P0252
P0253
P0254
P0255

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

Bosch CDi压力调节阀

这个测试的目的是评估Bosch CDi压力调节阀的工作状况,分析压力调节阀在怠速时的控制信号电压和占空比。

观看压力调节阀(Bosch共轨柴油)测试视频

如何进行测试

●根据汽车制造商提供的资料查找出压力调节阀的接地回路电线。该阀有两条电路连接:—条点火正极(15V)和一条切换/通断的接地回路。
●连接一条BNC测试线到示波器A通道,连接一个后背刺针到测试线彩色接头(正极)上。再用刺针背刺压力调节阀的通断接地线,测试线黑色接头连接到蓄电池负极搭铁。
●也可以断开2针脚连接器,使用TA012 2针脚引线6-路通用引线连接2针脚连接器分开的两半,再将测试线连接到引线上。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击”开始”,开始观察实时数据。
●打开点火开关,等待仪表板预热塞指示灯熄灭后,再起动发动机。
●采集到波形后,“停止“示波器运行。
●关闭发动机
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

示例波形

波形注意点

这个波形有以下特征:

●是一个PWM脉冲宽度调制的接地开关信号,电压在电源正极约15V和电源负极约OV切换变化。
●信号电压处于0V的时间和PWM占空比有关。在示例波形中,每个循环周期内电压处于OV占了大约五分之
也就是说占空比为20 %。
●示例波形中每5ms 出现五个循环周期,因此循环频率为1000 Hz。

波形库

波形库添加通道的下拉菜单中选择Fuel pressure regulator pressure waveform

更多信息

共轨柴油喷射(CDi)的压力调节阀是一个执行器。它通常由点火正极(15V)供电,且由CDi控制单元提供的占空比接地来控制压力。

大多数共轨系统都装有压力调节阀。它可以被安装在高压泵上或者共轨管自身上。

压力调节阀与流量控制阀一起控制共轨压力。泄压阀简单控制进入回油系统的高压油的数量,从而增加或减少共轨管的燃油压力。

如果怀疑信号有故障时,测试CDi控制单元与压力调节阀之间的导线。

确保CDi控制单元有良好的电源供应和接地,这是必需的。

诊断故障代码

相关故障代码
P0087 P0088 P0089 P0090 P0091 P0092 P0093 P0094

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

电磁阀式喷油嘴-Bosch共轨柴油(电流)

这个测试的目的是评估Bosch 共轨柴油机喷油嘴(电磁阀式)在不同工况下的工作状况。

观看电磁阀式喷油嘴电流,(Bosch共轨柴油)测试视频

如何进行测试

●连接小电流钳(0至60安培)到示波器A通道,将电流钳钳口夹在喷油嘴的电源线上。
●如果电源线难以接触到,可以拔开喷油嘴的插头,使用TA012 2针脚引线6-路通用引线,再将60安电流钳夹在引线暴露部分的蓝色或黄色线上。
●确定电流钳已开启,并选择了20A量程。在连接电流钳到被测电路之前,按下“归零”(zero)按钮。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击”开始”,开始观察实时数据。
●起动发动机。
●采集到波形后,“停止“示波器运行。
●关闭发动机。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

请注意:
该电流受控和受限于汽车电子控制模块(ECM),可能有必要轮流连接每条线缆并观看波形,以识别正确的线缆。电流钳需要面对正确的方向,钳口上有一个箭头,错误的连接会导致反向的波形图。

示例波形

怠速时的喷油嘴波形

加速时的喷油嘴波形

超速时的喷油嘴波形

波形注意点

这个波形有以下特征:

●电流达到约16A到18A的峰值才开始喷油动作。
●第一个示例波形显示两个独特的喷油点,第一个脉冲被称为”预喷射”阶段,第二个被称为”主”喷射阶段。
●当节气门被打开,发动机加速时,第二个示例波形显示”主”喷射脉冲以汽油喷油嘴相似的方式扩张。
●在第三个示例波形里,油门被松开,”主”喷射脉冲消失,直到发动机转速刚好回到怠速上。
●在特定的条件下,可能看到第三个喷射阶段,这被称为”后喷射”,它主要用于控制废气排放。

波形库

波形库添加通道的下拉菜单中选择lnjector current.

更多信息

喷射进入发动机的燃油数量是由车辆的电子控制模块(ECM)读取发动机上各种传感器的信息,精确计算出来的。而且,喷油嘴保持开启的时间长度由燃油压力决定。

发动机在低转速时油泵提供低油压,所以需要更长的喷油嘴开启时间。当发动机和油泵速度增加时,喷油嘴开启时间减少,但由于燃油压力更高,输送给发动机的柴油数量也更多。

喷油时间点决定喷油正时。这取决于许多因素,包括:发动机速度,发动机负荷和发动机温度。

喷油嘴初始时被供给80伏电压来抬升喷油嘴针阀,然后用50伏电压保持针阀打开。这些高电压来自于一个电容,而此电容收集的是周期内前一个喷油的感应电压。

与传统柴油喷射系统只利用一个喷射阶段不同的是,HDI系统可有多至三个喷射阶段!

预喷油用于喷少量燃油到发动机里。燃油立即燃烧,并被作为“主”喷射阶段的点火源。这种两个阶段喷射可以减低柴油机“爆振”特性。

“主”喷射是传统的喷射阶段,它的时间取决于车辆的ECM。

后喷射用于在特定条件下减少从排气系统中排放的污染物数量。

诊断故障代码

相关故障代码
P0200 P0201 P0202 P0203 P0204

P0205
P0206
P0207
P0208
P0209
P0210
P0211
P0212
P0213
P0214
P0216
P0261
P0262
P0263
P0264
P0265
P0266
P0267
P0268
P0269
P0270
P0271
P0272
P0273
P0274
P0275
P0276
P0277
P0278
P0279
P0280
P0281
P0282
P0283
P0284
P0285
P0286
P0287
P0288
P0289
P0290
P0291
P0292
P0293
P0294
P0295
P0296

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

单点喷油嘴-单点(电流)

这个测试的目的是评估单点喷油嘴的控制信号波形以及机械工作状况。

如何进行测试

●连接小电流钳(0至60安培)到示波器A通道,将电流钳钳口夹在喷油嘴的电源线上。
●如果电源线难以接触到,可以拔开喷油嘴的插头,使用TA012 2针脚引线6-路通用引线,再将60安电流钳夹在引线暴露部分的蓝色或黄色线上。
●确定电流钳已开启,并选择了20A量程。在连接电流钳到被测电路之前,按下“归零”(zero)按钮。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击”开始”,开始观察实时数据。
●起动发动机。
●采集到波形后,“停止”示波器运行。
●关闭发动机。
●使用波形缓冲区放大以及测量等工具来观察和分析波形。

请注意:

电流钳需要面对正确的方向,钳口上有一个箭头,错误的连接会导致反向的波形图。

示例波形

波形注意点

●在示例波形图上清晰地看到波形被分成两个易于区分的区域。波开的第一部分负责增加电磁力来抬升针阀。在这个例子里,这个时间花费大约1.3ms。
●在这点上可以看到,电流被保持在1.3安培,然后因为针阀关闭而下降到0。两个区域交界处的转折点标志着此时喷油嘴阀门已经完全打开。
●考虑到这一点,可以看到喷油嘴保持打开的时间与测量到的时间是不一样的,也不可能计算出喷油嘴弹簧完全关闭喷油嘴切断燃油供给所耗的时间。
●此测试非常适用于识别电磁阀反应时间慢到不可接受的喷油嘴。这样的喷油嘴不能提供所需求的喷油量,导致发动机在稀混合气下运行,最终氧传感器电压也会被影响。

更多信息

选用单点喷油嘴而不选用多点结构的原因,有时很难说得清,只有归因于考虑成本和应用简单。单点喷油嘴(更大的车使用两个喷油嘴)安装在外观与化油器相似的壳体里。

单点喷油嘴的工作压力非常低(通常约1 bar),燃油雾化只能用最低限度来描述,依赖于进气歧管内的空气运动将燃油粉碎为更小的颗粒,为燃烧做准备。

在设计上,单点喷射相对于化油器的主要优势是:可以安装氧气传感器确保维持闭环控制。多点喷射无疑是确保汽车发动机有较高的动力输出和较低的废气排放。

由于系统的设计,不能使用传统的空气流量计,而经常会使用进气压力传感器。

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

多点喷油嘴-多点(电流)

这个测试的目的是评估多点喷油嘴的控制信号波形以及机械工作状况。

观看多点喷油嘴电流(汽油机)测试视频。

如何进行测试

●连接小电流钳(0至60安培)到示波器A通道,将电流钳钳口夹在喷油嘴的电源线上。
●如果电源线难以接触到,可以拔开喷油嘴的插头,使用TA012 2针脚引线6-路通用引线,再将60安电流钳夹在引线暴露部分的蓝色或黄色线上。
●确定电流钳已开启,并选择了20A量程。在连接电流钳到被测电路之前,按下“归零”(zero)按钮。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击”开始”,开始观察实时数据。
●起动发动机。
●采集到波形后,“停止”示波器运行。
●关闭发动机。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

请注意:

电流钳需要面对正确的方向,钳口上有一个箭头,错误的连接会导致反向的波形图。

示例波形

波形注意点

这个波形有以下特征:

●当ECM接通电磁阀的接地回路,电流开始涌入,这标志着喷油动作开始。
●在示例波形图上清晰地看到波形被分成两个易于区分的区域。波形的第一部分负责增电磁力来抬升针阀,在这个例子里花费时间大约1.5ms。
●两个区域交界处的转折点标志着此时喷油嘴阀门已经完全打开。
●在喷油动作开始后大约3到4 ms,电流达到峰值,并且在接下来的喷油过程中保持恒定。
●当ECM断开电磁阀的接地回路,电流迅速消失,喷油嘴阀门关闭。

波形库

波形库添加通道的下拉菜单中选择lnjector current

更多信息

喷油嘴是一个使用12伏电源的机电设备,电源来自燃油喷射继电器或电子控制模块(ECM) 。

这两种情况的电源电压只有在发动机起动时或运行中才会存在,因为这电压供应都是由转速继电器控制的。

喷油嘴是由共轨燃油管供油的。喷油嘴保持开启的时间长度取决于发动机管理ECM读取的各种发动机传感器输入信号。这些输入信号包括:

●冷却液温度传感器的电阻。
●空气流量计的输出电压(如有配备)。
●空气温度传感器的电阻。
●进气歧管绝对压力(MAP)传感器信号(如有配备)。
●节气门开关/电位计的位置信号。

保持开启时间或“喷油嘴持续时间”会变动以补偿冷机起动和暖机阶段,例如当发动机暖机到工作温度,喷油嘴开启时间由长变短。保持开启时间会在加速下增加和在轻负载条件下会缩短。

取决于所遇到的具体系统,喷油嘴每个周期可以喷射一次或两次。同时喷射型的喷油嘴的线缆并联在一起,且在同一时间一起喷射。

顺序喷射型,和同时喷射型—样,有一条共同的电源线连接到每个喷油嘴上,但是与同时喷射型不同的是每个喷油嘴的接地回路都是分开的。在相位传感器的协助下,独立喷射允许系统在进气门打开时喷射燃油,且进气有助于雾化燃油。

在V”型发动机上,喷油嘴以岸”为组喷油也很普遍。燃油会轮流地被供应给每一”岸””。以捷豹V12为例,喷油嘴以3个为一组(共4组)轮流地喷射。

因为喷油嘴喷油频率的关系,顺序喷射型喷油嘴的喷油持续时间或开启时间,应该是同时型喷油嘴的两倍。当然这也取决于喷油嘴的流量。

喷油嘴由电磁阀组成,它通过弹簧保持在关闭的位置上,直到ECM接通它的接地回路才打开。当磁场将针阀抬离针座时燃油喷射给发动机。针阀抬升的总行程约为0.15mm(6 thou),反应时间约为1ms。

在示例波形图上清晰地看到波形被分成两个易于区分的区域。波形的第一部分负责增电磁力来抬升针阀。在这个例子里,这个时间花费大约1.5ms。在这点上可以看到,电流先下降,然后由于针阀保持打开而再次上升。考虑到这一点,可以看到喷油嘴保持打开的时间与测量到的时间是不一样的。也不可能计算出喷油嘴弹簧完全关闭喷油嘴切断燃油供给所耗的时间。

此测试非常适用于识别电磁阀反应时间慢到不可接受的喷油嘴。这样的喷油嘴不能提供所需求的喷油量,且有问题的汽缸会在稀混合气下运行。

诊断故障代码

相关故障代码
P0200 P0201 P0202 P0203 P0204

P0205
P0206
P0207
P0208
P0209
P0210
P0211
P0212
P0213
P0214
P0216
P0261
P0262
P0263
P0264
P0265
P0266
P0267
P0268
P0269
P0270
P0271
P0272
P0273
P0274
P0275
P0276
P0277
P0278
P0279
P0280
P0281
P0282
P0283
P0284
P0285
P0286
P0287
P0288
P0289
P0290
P0291
P0292
P0293
P0294
P0295
P0296

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

怠速控制阀-电磁式

这个测试的目的是评估怠速控制阀(ISCV)接受来自发动机控制单元(ECM)的控制信号波形。

观看怠速空气控制阀(电磁式)测试视频

如何进行测试

●根据汽车制造商提供的资料查找出怠速控制阀的接地回路电线。
●电磁式怠速控制阀(ISCV)有两根线:一根蓄电池电压的电源线和一根切换/开关接地线。
●连接一条BNC测试线到示波器A通道,连接一个后背刺针到测试线彩色接头(正极)上。再用刺针背刺怠速控制阀的通断接地线,测试线黑色接头连接到蓄电池负极搭铁。
●也可以断开2针脚连接器,使用TA012 2针脚引线6-路通用引线连接2针脚连接器分开的两半,再将测试线连接到引线上。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●起动发动机,怠速运行。
●点击“开始”,开始观察实时数据。
●录制波形时,开启电子附属设备(车头灯和加热器等),使发动机怠速速度产生变化。
●采集到波形后,“停止“示波器运行。
●关闭发动机
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

示例波形

波形注意点

这个波形有以下特征:

●在特定的条件下,该电子部件的接地线被控制搭铁。怠速控制阀有一个12伏电源,它的切换动作可以在示例波形里看到。
●示例波形显示接地回路被切换,是一个“锯齿”波形,电压从12V下降至6V左右。
●切换频率会增大或减小,这由ECM决定以维持预设的发动机速度。

波形库

波形库添加通道的下拉菜单中选择ldle Speed Control Valve lscv voltage

更多信息

怠速控制阀(ISCV)的功能是,顾名思义,根据发动机温度和不同的负载条件来控制发动机的怠速。

发动机第一次冷机起动时,发动机管理电子控制单元(ECU)给发动机冷起动加浓信号,并增加怠速速度到1200 rpm。是怠速控制阀负责怠速的增加。当发动机达到工作温度后,加浓信号被消除,且怠速速度下降到预设的速度。这怠速速度维持不变,不管发电机上的电子负载如何,也不管机械负载怎样(如自动变速箱已挂驱动档)。

电磁式怠速控制阀(ISCV)有两根线:一根蓄电池电压的电源线和一根切换/开关接地线。

接地回路的切换通断比率由ECM决定,以维持预设的发动机速度。怠速阀在节气门碟阀周围形成—条空气旁路,给进气道提供可控的空气流。如果发动机拥有可调的空气旁路和ISCV,可能需要一个特定的流程来平衡这两个空气路径。

示例波形显示接地回路被切换。探测电磁阀的电源线会产生—条电压值为充电电压的直线,而探测它的接地线显示的是“锯齿”波形。

大电量需求时,控制阀开启以维持发动机怠速速度,这时您可能会看到频率有轻微的变化。

旋转怠速控制阀是个机电设备,它的供电电压来自ECM或控制继电器。它有2或3根电线连接:前面提及的蓄电池电压和一根或两根切换/开关接地线。接地回路切换的比率由ECU决定,用以维持预设的怠速速度。ISCV可以是旋转式或电磁式,这两种都很流行,但旋转式的最常见。阀门在节气门碟阀周围形成─条空气旁路,给进气道输送可控的空气流;因此容易被灰尘和积碳影响它的性能。建议在汽车厂规定的服务时间间隔内用喷雾溶剂清洁阀门来维持它的效率。

如果发动机同时有可调节空气旁路和怠速控制阀,它可能需要一个特定的流程来平衡两个空气路径。

接地回路的切换动作可以在示波器上监测到,旋转型的怠速控制阀产生的是方波,电磁型的产生的是“锯齿”波。

旋转型急速控制间可能有一根或两根接地回路∶一根接地回路的系统,依靠电力将阀门拉开,依靠弹簧返回它的关闭位置;两根接地回路的系统,阀门开闭的两个方向都是依靠电力控制,这可用示波器的两个通道监测到。

诊断故障代码

相关故障代码
P0505 P0506 P0507 P0508 P0509 P0511 P0518 P0519

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

怠速控制阀-旋转螺线管

这个测试的目的是评估怠速控制阀(ISCV)接受来自发动机控制单元(ECM)的控制信号波形。

如何进行测试

●根据汽车制造商提供的资料查找出怠速控制阀的接地回路电线。
●怠速控制阀有2根或3根电线连接:一根蓄电池电压的电源线和一根或两根切换/开关接地线。
●连接一条BNC测试线到示波器A通道,连接一个后背刺剌针到测试线彩色接头(正极)上。再用刺针背刺怠速控制阀的通断接地线,测试线黑色接头连接到蓄电池负极搭铁。
●也可以断开2针脚连接器,使用TA012 2针脚引线6-路通用引线连接2针脚连接器分开的两半,再将测试线连接到引线上。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●起动发动机,怠速运行。
●点击“开始”,开始观察实时数据。
●录制波形时,开启电子附属设备(车头灯和加热器等),使发动机怠速速度产生变化。
●采集到波形后,“停止“示波器运行。
●关闭发动机。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

示例波形

波形注意点

这个波形有以下特征:

●这个波形是从2针脚的控制阀上采集到的。将控制针脚搭铁,迫使阀门克服弹簧打开;断开电路的控制针脚,阀门回到它关闭的位置上。
●是一个PWM脉冲宽度调制的接地开关信号,电压在电源正极约15V和电源负极约0.5V切换变化。
●示例波形中每10 ms 出现一个循环周期,因此循环频率为100 Hz。
●信号电压处于0.5V的时间取决于PWM占空比。在示例波形种中,每个循环周期内电压处于0.5V占了大约一半,也就是说占空比为50 %。
●PWM占空比会受发动机负载影响发生变化(例如转向助力系统、空调压缩机和交流发电机等等)。

波形库

波形库添加通道的下拉菜单中选择ldle Speed Control Valve Iscv, voltage。

更多信息

怠速控制阀(ISCV)的功能是根据发动机温度和不同的负载条件来控制发动机的怠速。

当发动机冷机起动时,发动机管理电子控制单元(ECU)给发动机冷起动加浓信号,并增加怠速速度到1200 rpm。是怠速控制阀负责怠速的增加。当发动机达到工作温度后,加浓信号被消除,且怠速速度下降到预设的速度。这怠速速度维持不变,不管发电机上的电子负载如何,也不管机械负载怎样(如自动变速箱已挂驱动档)。

通过间歇性将接地回路切换搭铁来控制该阀。它有一个12伏电源供应,它的切换动作可以在上面示例波形上看到。大电量需求时,控制阀开启以维持发动机怠速速度,这时您可能会看到频率有轻微的变化。

旋转怠速控制阀是个机电设备,它的供电电压来自ECM或控制继电器。它有2或3根电线连接:一根蓄电池电压的电源线和一根或两根切换/开关接地线。接地回路切换的占空比由ECU决定,用以维持预设的怠速速度。阀门在节气门碟阀周围形成一条空气旁路,给进气道提供可控的空气流;因此容易被灰尘和积碳影响它的性能。建议在汽车厂规定的服务时间间隔内用喷雾溶剂清洁阀门来维持它的效率。

如果发动机同时有可调节空气旁路和怠速控制阀,它可能需要一个特定的流程来平衡两个空气路径。

这波形是从2针脚的控制阀上采集到的。将控制针脚搭铁,迫使阀门克服弹簧打开;断开电路的控制针脚,阀门回到它关闭的位置上。也有3针脚的控制阀存在,它有2条切换/开关接地针脚。将1条针脚搭铁,迫使阀门打开;将另1条针脚搭铁,迫使阀门关闭。使用示波器的两个通道可以同时监测3针脚控制阀的2条切换/开关接地针脚。

探测控制阀的电源线,会产生—条电压值为充电电压的直线波形。

诊断故障代码

相关故障代码
P0505 P0506 P0507 P0508 P0509 P0511 P0518 P0519 

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

废气再循环-(EGR)电磁阀

这个测试的目的是通过分析EGR电磁阀的电压信号和频率来评估该电磁阀的工作状况。

如何进行测试

●根据汽车制造商提供的资料查找出EGR电磁阀的接地回路电线。该电磁阀阀有两条电路连接:—条12V电源线和一条切换/通断的接地回路。
●连接一条BNC测试线到示波器A通道,连接一个后背刺针到测试线彩色接头(正极)上。再用刺针背刺电磁阀的通断接地线,测试线黑色接头连接到蓄电池负极搭铁。
●也可以断开2针脚连接器,使用TA012 2针脚引线或6-路通用引线连接2针脚连接器分开的两半,再将测试线连接到引线上。
●注意:在达到合适条件接通电磁阀之前,两条线都是12V。
●该电磁阀有一个真空供应信号和一条与EGR阀连接的真空管。
●在特定的条件下,通过切换负极回路搭铁来激活电磁阀,这是由发动机控制模块(ECM)控制的。可能需要对车辆进行路试,以便模拟正确的条件。

示例波形

波形注意点

这个波形有以下特征:

●废气再循环(EGR)的目的是回收一小部分的废气引入到进气过程,以减少氮氧化合物(NOx)。NOx产生于高的燃烧温度,这通常与发动机稀燃烧相关。
●通过循环回收一小部分的废气,降低燃烧产生的温度,从而减少NOx。EGR电磁阀由电子控制模块((ECM)控制,并跟其它设备配合工作来监测被循环回收的废气数量。每个厂家的这个系统的构造都不一样,但通常是由真空和电磁阀组成。
●EGR的工作发生在非常特定的条件下,ECM控制电磁阀接地回路搭铁。ECM做这个动作需要的信息有:发动机温度、车速和发动机负载。需要如此精确的数据,只有对车辆进行路试时才能看到EGR电磁阀的动作。

更多信息

废气再循环(EGR)的作用是在特定的情况下,减少氮氧化合物(NOx)。当内部燃烧温度上升,气/油混合物里的氮气开始氧化,从而产生NOx。这种燃烧不是预期的,但也无可避免,因为空燃比在增加且点燃的是稀的混合物。

当发动机达到它的正常工作温度和车辆处于轻踩油门或轻负载条件下,NOx输出达到最大。

设计触媒催化器的目的是让NOx与其内部的贵金属佬接触,从而中和NOx以根除大部分的NOx;但是减少到达触媒某催化器的NOx数量,才能确保更低的NOx排放。EGR阀允许一小部分的废气被”呼吸”回到进气歧管来降低燃烧温度,并减少氮燃烧的机会。EGR阀是一个小的机械设备,当接收到真空信号时它打开废气通道。

这个真空信号由一个真空开关控制,由真空开关则由来自电子控制模块(ECM)的信号来激活。NOx,像碳氢化合物一样,是以百万分之几来计算的,且在车间环境里记录的读数明显比汽车在巡航状态下记录的要低。

图2显示典型的废气再循环(EGR)结构图,EGR|阀处于关闭位置。

废气循环数量过多会影响燃烧,并导致碳氢化合物增加。因此必须监测进入进气歧管的废气数量。不同的厂家用不同的方式来实现这个任务,下面描述了一些常规的例子。

Honda使用一个包含有已编程map的ECM。该map包含的信息是下面因素对应的正确的EGR数量,这些因素有:发动机转速、车速、温度和负载。

图2

诊断故障代码

相关故障代码
P0400 P0401 P0402 P0403 P0404

P0405
P0406
P0407
P0408
P1403
P1404
P1405
P1406
P1407
P1409

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

感应式曲轴位置传感器-起动中(非浮地)

这个测试的目的是评估有接地回路(非浮地)的感应式曲轴传感器在起动时的输出电压波形。

观看感应式曲轴传感器((非浮地-起动中)测试视频。

如何进行测试

●根据汽车制造商提供的资料查找出感应式曲轴传感器的输出信号线。该传感器通常有两条线,一条在起动过程中携带有信号,另一条是0伏。
●连接一条BNC测试线到示波器A通道,连接一个后背刺针到测试线彩色接头(正极)上,再用刺针背刺感应式曲轴传感器的信号线。
●连接一个黑色鳄鱼夹到测试线的黑色接头(负极)上,并将它夹到车辆底盘或蓄电池负极上搭铁。
●您也可以断开曲轴传感器的多插头,使用TA0122针脚引线6-路通用引线连接多插头分开的两半,再将测试线连接到引线上。
●最小化此帮助页面,您会看到 PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击“开始”,开始观察实时读数。
●摇转发动机3秒钟,同时监测A通道的信号。
●采集到波形后,“停止“示波器运行。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

示例波形

波形注意点

这个波形有以下特征:

●没有出现杂波,也没有偶发性信号缺失。
●发动机起动的第一时间就会感应产生一个交流电压,这个电压用来表示发动机转速和位置。
●随着发动机转速升高,信号电压的幅值和变化频率也会增大,直至转速升高到起动转速值。
●示例波形显示发动机转速由于四冲程循环发生周期性变化,压缩冲程导致曲轴速度下降,作功冲程导致曲轴速度上升。
●波形会显示一个信号”丢失”,这是因为信号轮上面的齿之间有一个相等间隔的故意留下的缺口(缺齿),PCM会利用信号上的这个”丢失”来识别曲轴的位置。

波形库

波形库添加通道的下拉菜单中选择Crankshaft sensor (Inductive)

更多信息

曲轴位置传感器(CKP)是现代发动机管理系统必须具备的基本部件之一。它的结构虽然非常简单,但CKP的正常工作对高效运行的发动机非常重要。

感应式CKP由两个重要的元件组成,一个线圈缠绕在一个永久磁体周围,永久磁体会自然地在线圈周围产生一个磁场。在磁场引入一个金属物体(以信号轮的形式)磁场强度会发生变化,增强或减弱取决于信号轮运转的速度和方向。

线圈感应出交流电压的唯一原因是磁场的变化。当信号轮静止时,无论信号轮与CKP的相对位置如何,都不会产生电压。

CKP波形会显示一个信号“丢失”,这是因为信号轮上面的齿之间有一个相等间隔的故意留下的缺口(缺齿)。PCM会利用信号上的这个“丢失”来识别曲轴的位置,这个位置可能是也可能不是上止点。汽车厂利用信号轮上的这个缺齿来表示不同的曲轴位置。例如,所有活塞成直线、(发动机安全位置)上止点、上止点前的角度,或者他们会选择间隔90度的缺齿组合。查阅相关的汽车手册来精确判定信号所指的曲轴位置。

曲轴转速的计算是基于CKP交流输出信号的频率。当曲轴转速增加,CKP输出信号的频率会成正比增加。信号的幅值也随着发动机转速增加而增加,在高速时超过交流20 V。

CKP传感器信号对发动机控制模块(ECM)至关重要,如果信号丢失或出现故障,将无法起动或运行发动机。因此,曲轴传感器故障可能会导致发动机曲柄转动但无法起动,或者导致发动机停机。

有必要对CKP进行物理检查,下面列出了要检查的重要区域:

●CKP在外壳/机体上的安装。传感器必须安装正确和牢固。
●检查CKP页端是否破损或有外来物。
●检查信号轮是否破损或有外来物。
●检查CKP和信号轮之间的空气间隙。
●检查信号轮的磨损。
●检查信号轮的轴端浮动。
●检查CKP是否有水/冷却液进入和腐蚀。
●检查CKP和PCM连接器的针脚编号队列是否遵照车辆规范。
●检查CKP位置是否有干扰源(消耗大电流的部件,如起动机马达、点火线圈和喷油器)。

诊断故障代码

相关故障代码
P0016 P0017 P0018 P0019

P0315
P0335
P0336
P0337
P0338
P0339
P0385
P0386
P0387
P0388
P0389

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

冷却液温度传感器(5V参考电压)

这个测试的目的是评估冷却液温度传感器(ECT)在发动机冷却液温度升高时的输出电压波形。

观看冷却液温度传感器测试视频

如何进行测试

●根据汽车制造商提供的资料查找出冷却液温度传感器的线路。该传感器的两条电线分别是约5伏的电源线和接地回路线,我们要连接的是电源线。
●连接一条BNC测试线到示波器A通道,测试线正极接在冷却液温度传感器的电源线上,负极搭铁。
●也可以断开2针脚连接器,使用TA0122针脚引线6-路通用引线连接2针脚连接器分开的两半,再将测试线直接连接到引线上。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击“开始”,开始观察实时读数。
●起动发动机。
●观察发动机冷却液温度升高时的信号波形。

示例波形

未过滤波形

10Hz低通滤波后的波形

波形注意点

这个波形有以下特征:

●随着发动机冷却液温度上升,信号电压逐渐下降。
●第一个波没有过滤,显示发动机线缆拾取到的大量噪音干扰。第二个波形利用了低通过滤器(在通道选项菜单里设置)将高于10Hz的频率过滤掉。
●起动发动机,多数情况下初始电压会在3至4伏的区域内,但是这个电压取决于发动机的温度和工作情况。

波形库

波形库添加通道的下拉菜单中选择Coolant temperature sensor。

更多信息

冷却液温度传感器(CTS)是一个两线的设备,有一个约5伏的电源。它的工作是向发动机控制模块(ECM)报告发动机的温度。这个信号决定发动机暖机加浓和快的怠速转速。

该传感器的阻抗随着发动机温度变化而改变。大多数传感器有一个负向温度系数(NTC),意思是部件的阻抗随温度增加而下降。阻抗变化从而改变传感器的电压输出,可监测这个电压在其工作范围内查看差异变化。

电压的变化通常是平滑的。如果冷却温度传感器在一特定温度时有故障,唯一可靠的检测方法是使用示波器。

这类传感器通常有一个负向温度系数(NTC),意思是当温度上升部件的阻抗下降。正向温度系数(PTC)的传感器没有负向温度系数的传感器这么普遍,温度上升时正向温度系数传感器的阻抗增加。

对于1992年前的没有安装触媒催化器的汽车,为了增加车辆的驾驶性能和效能,可以用一个电阻器和冷却液温度传感器串联来改变阻抗。

电阻器的电阻值在串联进去前必须知道。这种修改方法不能在安装有触媒催化器的发动机上实现,因为过多的供油会扰乱lambda或氧传感器的修正工作。

这些传感器是制造商自定义的,且信号输出相差很大,尽管它们外观看起来可能一样。任何电路的连接不良都会在串联线路上产生一个额外的阻抗,并且导致ECM看到的读数是虚假的。在ECM的多插头处读取电阻值可以确认线路是否连接良好。

诊断故障代码

相关故障代码
P0115 P0116 P0117 P0118 P0119

P0125
P1114
P1115
P1116
P1117
P1118
P1119
P1258

免责声明 此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。